教师简介

​倪琴

时间:2023-10-08浏览:2123设置




倪琴



马德里理工大学计算机科学与技术 博士

上海外国语大学副教授、硕士生导师

电子邮箱:niqin@shisu.edu.cn 

 

研究方向:

人工智能教育应用,教育大数据分析,智能教育治理

 

教学课程:

《人工智能导论》生成式人工智能之美生成式人工智能与语言学习信息技术教育应用

学术任职

ž UNESCO联合国教科文组织 AI与未来学习国际专家组 专家成员

参与撰写和发布UNESCO官方文件《生成式人工智能教育和研究应用全球指南》和《教师人工智能能力框架》

ž 前沿科技与产业创新治理专委会副秘书长

ž WRO世界青少年机器人奥林匹克竞赛 国际裁判

 

科研项目:

1国家自然科学基金青年基金:基于深度强化学习的自适应学习路径推荐研究(6210020445)20221-202412主持

2联合国教科文组织委托咨询课题:中国教师人工智能能力框架,20235-20239月,主持

3)上海市2021年度科技创新行动计划人工智能科技支撑专项课题:基于认知发展的机器认知智能评测理论与方法(21511100102)20219-20248主持

4 上海市自然科学基金面上项目:基于认知能力评估的自适应学习路径推荐研究(21ZR1446900)20214-20243主持

5上海市青年科技英才扬帆计划项目:基于深度迁移学习的行为识别模型与优化方法研究(19YF1436800), 20195-20224主持

6上海市宝山区教育局委托项目:基于社会实验的智能教育伦理与人文性研究。20229-20248月,主持

7国家新闻出版署重点实验室开放研究课题基金:面向智能教育的社会实验体系探索,20217-20226主持

8认知智能国家重点实验室智能教育开放课题:支持线上线下融合教育新生态的教师信息素养提升实践研究。2019-2021年,主持

 

学术论文:

[1] Q. Ni, Y.Z. Yu, Y.M. Ma, L. Xin, C.P. Deng, T.J.Wei and M. Xuan. The Social Cognition Ability Evaluation of LLMs: A Dynamic Gamified Assessment and Hierarchical Social Learning Measurement Approach. ACM Transactions on Intelligent Systems and Technology. 2024. (SCI二区)

[2] Y.Y Mao, X. Lin, Q. Ni and L. He. BDIQA: A new Dataset for Video Question Answering to Explore Cognitive Reasoning through Theory of Mind. AAAI 2024. (CCF-A类会议)

[3Q. Ni, Y. Mi, Y. Wu, L. He, Y. Xu and B. Zhang. Design and Implementation of the Reliable Learning Style Recognition Mechanism Based on Fusion Labels and Ensemble Classification. IEEE Transactions on Learning Technologies. 2023. (SCI, SSCI一区)

[4倪琴,贺樑,王英英,白庆春,吴永和人工智能向善:面向未成年人的人工智能应用监管探研电化教育研究. 2023(07). (CSSCI)

[5倪琴,刘志,郝煜佳,贺樑智能教育场景下的算法歧视:潜在风险、成因剖析与治理策略中国电化教育. 2022(12). (CSSCI)

[6] 倪琴,刘潞,李潇,宣沫.  AI“点燃课堂 国外教师用生成式人工智能辅助教学, 中国教育报,2024 (03).

[7] Q. Ni, T.J. Wei, J. B. Zhao, L. He, C.J. Zheng. HHSKT: A Learner-Question Interactions Based Heterogeneous Graph Neural Network Model for Knowledge Tracing. Expert systems with applications, 2022, 11(23):119234. (SCI一区)

[8] B Zhang, G Zou, D Qin, Q. Ni*(通讯作者), H Mao*, M Li. RCL-Learning: Resnet and Convolutional Long Short-Term Memory-Based Spatiotemporal Air Pollutant Concentration Prediction Model. Expert Systems with Applications, 2022, 207, 118017. (SCI一区)

[9] Q. Ni, Y. Zhu, L. Zhang, X. Lu and L. Zhang, Leverage Learning Behaviour Data for Students' Learning Performance Prediction and Influence Factor Analysis, IEEE Transactions on Artificial Intelligence, 2023.

[10] L Zhang, Y Zhu, Q Ni* (通讯作者), X Zheng, Z Gao, Q Zhao. Local/Global explainability empowered expert-involved frameworks for essential tremor action recognition. Biomedical Signal Processing and Control, 2024, 95: 106457.(SCI二区)

[11] L Zhang, J Yu, Z Gao, Q Ni*(通讯作者). A multi-channel hybrid deep learning framework for multi-sensor fusion enabled human activity recognition. Alexandria Engineering Journal, 202491, 472-485. (SCI一区)

[12] Q. Ni, L.L. Zhang, B. Zhang and F.K. Chiang. Interdisciplinary Method for Assessing Students’ Ability Based on STEM Projects. International Journal of Engineering Education. 2019, 35(2), pp.698-709. (SSCI, SCI)

[13] Y.H. Xu, Q. Ni*(通讯作者), S. Liu, Y.F. Mi, Y.Z. Yu and Y.J. Hao. Learning Style Integrated Deep Reinforcement Learning Framework for Programming Problem Recommendation in Online Judge System. International Journal of Computational Intelligence Systems. 2022, 15(114). (SCI)

[14] Q. Ni, Z. Fan, L. Zhang, XC. Zheng, and YP. Zhang. Daily Activity Recognition and Tremor Quantification from Accelerometer Data for Patients with Essential Tremor Using Stacked Denoising Autoencoders. International Journal of Computational Intelligence Systems, 2022, 15(1): 1-13. (SCI)

[15] Q. Ni, Z. Fan, L. Zhang, C.D. Nugent, I. Cleland, YP. Zhang and N. Zhou. Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders, Sensors, vol.20, no.18, pp.5114-5136, 2020 (SCI)

[16] Q.Ni, I. Cleland, C.D. Nugent A.B. Garcı́a Hernando and I.P. de la Cruz. Design and Assessment of  The Data Analysis Process for A Wrist Worn Smart Object to Detect Atomic Activities in The Smart Home. Pervasive and Mobile Computing. 2019, 56(5), pp.57-70. (SCI)

[17] L. Zhang, Q. Ni*(通讯作者), G. Zhang, M. Zhai, J. Moreno, and C. Briso. Random Forests Enabled Context Detections for Long-Term Evolution Network for Railway. IET Microwaves, Antennas & Propagation, 2019, 13(8), pp.1080-1086. (SCI)

[18] Q. Ni, L. Zhang, L.Q. Li. A heterogeneous ensemble approach for activity recognition with integration of change point-based data segmentation. Applied Sciences. 2018, 8(9), 1695. (SCI)

[19] T. Patterson, N. Khan, S. McClean, C.D. Nugent, S. Zhang, I. Cleland, and Q. Ni. “Sensor-Based Change Detectionfor Timely Solicitation of User Engagement.” IEEE Transaction on Mobile Computing. 2017, 16(10). pp.2889-2900. (SCI)

[20] Q. Ni, T. Patterson, I. Cleland and C.D. Nugent. Dynamic Detection of Window Starting Positions and Its Implementation Within an Activity Recognition Framework. Journal of Biomedical Informatics. 2016, 62(8). pp. 171-180. (SCI)

[21] Q. Ni, A.B. Garcı́a Hernando and I.P. de la Cruz. “A Context-aware System Infrastructure for Monitoring Activities of Daily Living in Smart Home.” Journal of Sensors. 2016, Article ID 9493047.DOI:10.1155/2016/9493047, 2016. (SCI)

[22] Q. Ni, I.P. de la Cruz and A.B. Garcı́a Hernando. A foundational ontology-based model for human activity representation in smart homes. Journal of Ambient Intelligence and Smart Environments. 2016, 8(1). pp.47-61. (SCI)

[23] Q. Ni, A.B. Garcı́a Hernando and I.P. de la Cruz. “The elderly’s independent living in smart homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development. Sensors. 2015, 15(5). pp.11312-11362. (SSCI, SCI)

[24] T.J. Wei, B.Y. Hu and Q. Ni*(通讯作者). Bayesian Knowledge Tracing based on Transformer. IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), p. 449-452, 2022. (EI)

[25] 王英英,倪琴*,乐惠骁,贺樑,郭少阳.人机协作教学中的教师算法信任研究全球华人计算机教育应用大会(GCCCE)2023729-737.

[26] 倪琴,徐宇辉,魏廷江等.基于在线学习行为数据的学习效果模型与影响因素分析.上海师范大学学报(自然科学版), 2022, 51(02):143-148.

[27] 魏廷江,倪琴*, 高荣等面向教育大数据的知识追踪研究综述上海师范大学学报(自然科学版), 2022, 51(02):171-179.

[28] B.Y. Hu, Q. Ni*, R. Gao. Development Strategies and Practical Insights of Teachers' Artificial Intelligence Competence. International Conference on Intelligent Education and Computer Technology (IECT), 2024.EI

[29] R. Gao, Q. Ni*, B.Y. Hu,. Fairness of Large Language Models in Education. International Conference on Intelligent Education and Computer Technology (IECT), 2024.EI

 

专著章节

Q. Ni, A.B. Garcı́a Hernando, and I.P. de la Cruz. Smart home based activity monitoring and sensing infrastructure: a survey, Avid Science Publisher Inc., 24958, 2019.(ISBN978-93-88170-62-8)

发明专利(第一发明人):

1. 基于堆叠降噪自编码器的人体日常行为活动识别优化方法(CN110298264,已授权)

2. 一种基于异构图神经网络模型的学习者学习状态预测方法(CN116361697,已公开)

3. 基于融合标签和堆叠机器学习模型的学习风格识别方法(CN113408576,已公开)





返回原图
/