倪琴 马德里理工大学计算机科学与技术 博士 上海外国语大学副教授、硕士生导师 电子邮箱:niqin@shisu.edu.cn |
研究方向:
人工智能教育应用,教育大数据分析,智能教育治理
教学课程:
《人工智能导论》、《生成式人工智能之美》、《生成式人工智能与语言学习》、《信息技术教育应用》
学术任职:
ž UNESCO联合国教科文组织 AI与未来学习国际专家组 专家成员
(参与撰写和发布UNESCO官方文件《生成式人工智能教育和研究应用全球指南》和《教师人工智能能力框架》)
ž 前沿科技与产业创新治理专委会副秘书长
ž WRO世界青少年机器人奥林匹克竞赛 国际裁判
科研项目:
(1)国家自然科学基金青年基金:基于深度强化学习的自适应学习路径推荐研究(6210020445),2022年1月-2024年12月, 主持
(2)联合国教科文组织委托咨询课题:中国教师人工智能能力框架,2023年5月-2023年9月,主持
(3)上海市2021年度“科技创新行动计划”人工智能科技支撑专项课题:基于认知发展的机器认知智能评测理论与方法(21511100102),2021年9月-2024年8月, 主持
(4) 上海市自然科学基金面上项目:基于认知能力评估的自适应学习路径推荐研究(21ZR1446900),2021年4月-2024年3月, 主持
(5)上海市青年科技英才扬帆计划项目:基于深度迁移学习的行为识别模型与优化方法研究(19YF1436800), 2019年5-2022年4月, 主持
(6)上海市宝山区教育局委托项目:基于社会实验的智能教育伦理与人文性研究。2022年9月-2024年8月,主持
(7)国家新闻出版署重点实验室开放研究课题基金:面向智能教育的社会实验体系探索,2021年7月-2022年6月, 主持
(8)认知智能国家重点实验室智能教育开放课题:支持线上线下融合教育新生态的教师信息素养提升实践研究。2019年-2021年,主持
学术论文:
[1] Q. Ni, Y.Z. Yu, Y.M. Ma, L. Xin, C.P. Deng, T.J.Wei and M. Xuan. The Social Cognition Ability Evaluation of LLMs: A Dynamic Gamified Assessment and Hierarchical Social Learning Measurement Approach. ACM Transactions on Intelligent Systems and Technology. 2024. (SCI二区)
[2] Y.Y Mao, X. Lin, Q. Ni and L. He. BDIQA: A new Dataset for Video Question Answering to Explore Cognitive Reasoning through Theory of Mind. AAAI 2024. (CCF-A类会议)
[3] Q. Ni, Y. Mi, Y. Wu, L. He, Y. Xu and B. Zhang. Design and Implementation of the Reliable Learning Style Recognition Mechanism Based on Fusion Labels and Ensemble Classification. IEEE Transactions on Learning Technologies. 2023. (SCI, SSCI一区)
[4] 倪琴,贺樑,王英英,白庆春,吴永和. 人工智能向善:面向未成年人的人工智能应用监管探研. 电化教育研究. 2023(07). (CSSCI)
[5] 倪琴,刘志,郝煜佳,贺樑. 智能教育场景下的算法歧视:潜在风险、成因剖析与治理策略. 中国电化教育. 2022(12). (CSSCI)
[6] 倪琴,刘潞,李潇,宣沫. AI“点燃”课堂 国外教师用生成式人工智能辅助教学, 中国教育报,2024 (03).
[7] Q. Ni, T.J. Wei, J. B. Zhao, L. He, C.J. Zheng. HHSKT: A Learner-Question Interactions Based Heterogeneous Graph Neural Network Model for Knowledge Tracing. Expert systems with applications, 2022, 11(23):119234. (SCI一区)
[8] B Zhang, G Zou, D Qin, Q. Ni*(通讯作者), H Mao*, M Li. RCL-Learning: Resnet and Convolutional Long Short-Term Memory-Based Spatiotemporal Air Pollutant Concentration Prediction Model. Expert Systems with Applications, 2022, 207, 118017. (SCI一区)
[9] Q. Ni, Y. Zhu, L. Zhang, X. Lu and L. Zhang, Leverage Learning Behaviour Data for Students' Learning Performance Prediction and Influence Factor Analysis, IEEE Transactions on Artificial Intelligence, 2023.
[10] L Zhang, Y Zhu, Q Ni* (通讯作者), X Zheng, Z Gao, Q Zhao. Local/Global explainability empowered expert-involved frameworks for essential tremor action recognition. Biomedical Signal Processing and Control, 2024, 95: 106457.(SCI二区)
[11] L Zhang, J Yu, Z Gao, Q Ni*(通讯作者). A multi-channel hybrid deep learning framework for multi-sensor fusion enabled human activity recognition. Alexandria Engineering Journal, 2024,91, 472-485. (SCI一区)
[12] Q. Ni, L.L. Zhang, B. Zhang and F.K. Chiang. Interdisciplinary Method for Assessing Students’ Ability Based on STEM Projects. International Journal of Engineering Education. 2019, 35(2), pp.698-709. (SSCI, SCI)
[13] Y.H. Xu, Q. Ni*(通讯作者), S. Liu, Y.F. Mi, Y.Z. Yu and Y.J. Hao. Learning Style Integrated Deep Reinforcement Learning Framework for Programming Problem Recommendation in Online Judge System. International Journal of Computational Intelligence Systems. 2022, 15(114). (SCI)
[14] Q. Ni, Z. Fan, L. Zhang, XC. Zheng, and YP. Zhang. Daily Activity Recognition and Tremor Quantification from Accelerometer Data for Patients with Essential Tremor Using Stacked Denoising Autoencoders. International Journal of Computational Intelligence Systems, 2022, 15(1): 1-13. (SCI)
[15] Q. Ni, Z. Fan, L. Zhang, C.D. Nugent, I. Cleland, YP. Zhang and N. Zhou. Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders, Sensors, vol.20, no.18, pp.5114-5136, 2020 (SCI)
[16] Q.Ni, I. Cleland, C.D. Nugent A.B. Garcı́a Hernando and I.P. de la Cruz. Design and Assessment of The Data Analysis Process for A Wrist Worn Smart Object to Detect Atomic Activities in The Smart Home. Pervasive and Mobile Computing. 2019, 56(5), pp.57-70. (SCI)
[17] L. Zhang, Q. Ni*(通讯作者), G. Zhang, M. Zhai, J. Moreno, and C. Briso. Random Forests Enabled Context Detections for Long-Term Evolution Network for Railway. IET Microwaves, Antennas & Propagation, 2019, 13(8), pp.1080-1086. (SCI)
[18] Q. Ni, L. Zhang, L.Q. Li. A heterogeneous ensemble approach for activity recognition with integration of change point-based data segmentation. Applied Sciences. 2018, 8(9), 1695. (SCI)
[19] T. Patterson, N. Khan, S. McClean, C.D. Nugent, S. Zhang, I. Cleland, and Q. Ni. “Sensor-Based Change Detectionfor Timely Solicitation of User Engagement.” IEEE Transaction on Mobile Computing. 2017, 16(10). pp.2889-2900. (SCI)
[20] Q. Ni, T. Patterson, I. Cleland and C.D. Nugent. Dynamic Detection of Window Starting Positions and Its Implementation Within an Activity Recognition Framework. Journal of Biomedical Informatics. 2016, 62(8). pp. 171-180. (SCI)
[21] Q. Ni, A.B. Garcı́a Hernando and I.P. de la Cruz. “A Context-aware System Infrastructure for Monitoring Activities of Daily Living in Smart Home.” Journal of Sensors. 2016, Article ID 9493047.DOI:10.1155/2016/9493047, 2016. (SCI)
[22] Q. Ni, I.P. de la Cruz and A.B. Garcı́a Hernando. A foundational ontology-based model for human activity representation in smart homes. Journal of Ambient Intelligence and Smart Environments. 2016, 8(1). pp.47-61. (SCI)
[23] Q. Ni, A.B. Garcı́a Hernando and I.P. de la Cruz. “The elderly’s independent living in smart homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development. Sensors. 2015, 15(5). pp.11312-11362. (SSCI, SCI)
[24] T.J. Wei, B.Y. Hu and Q. Ni*(通讯作者). Bayesian Knowledge Tracing based on Transformer. IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), p. 449-452, 2022. (EI)
[25] 王英英,倪琴*,乐惠骁,贺樑,郭少阳.人机协作教学中的教师算法信任研究. 全球华人计算机教育应用大会(GCCCE),2023,729-737.
[26] 倪琴,徐宇辉,魏廷江等.基于在线学习行为数据的学习效果模型与影响因素分析.上海师范大学学报(自然科学版), 2022, 51(02):143-148.
[27] 魏廷江,倪琴*, 高荣等. 面向教育大数据的知识追踪研究综述. 上海师范大学学报(自然科学版), 2022, 51(02):171-179.
[28] B.Y. Hu, Q. Ni*, R. Gao. Development Strategies and Practical Insights of Teachers' Artificial Intelligence Competence. International Conference on Intelligent Education and Computer Technology (IECT), 2024.(EI)
[29] R. Gao, Q. Ni*, B.Y. Hu,. Fairness of Large Language Models in Education. International Conference on Intelligent Education and Computer Technology (IECT), 2024.(EI)
专著章节:
Q. Ni, A.B. Garcı́a Hernando, and I.P. de la Cruz. Smart home based activity monitoring and sensing infrastructure: a survey, Avid Science Publisher Inc., 24958, 2019.(ISBN:978-93-88170-62-8)
发明专利(第一发明人):
1. 基于堆叠降噪自编码器的人体日常行为活动识别优化方法(CN110298264,已授权)
2. 一种基于异构图神经网络模型的学习者学习状态预测方法(CN116361697,已公开)
3. 基于融合标签和堆叠机器学习模型的学习风格识别方法(CN113408576,已公开)